Lecture 10 - 1

Lecture 10

Adders

Revised by WJ Han

Adders

• Binary addition

$$0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10$$

• If both numbers are 1, we need two bits to store the result, sum and carry.

Half Adders

Add two input numbers and generate the sum and carry for the result.

XOR Gates

• XOR generates 1 if the two inputs have different values.

N-Input XOR Gates

• N-input XOR is defined as an odd function, i.e. generates 1 if odd number of inputs are 1.

Χ	Υ	Ζ	W
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

N-Input Gates

 N-input gates can be replaced by 2 input gates due to commutative law.

Half Adders Again

X	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

 $S = \overline{X} \cdot Y + X \cdot \overline{Y} = X + Y$

Full Adders

An half adder plus another input for the carry from the previous lower significant position.

Full Adders Implementation

Full Adders Implementation

Critical Path of a Combinational Circuit

- The time that a circuit takes to generates a result is called the circuit delay.
- If we assume every two input gate takes 1ns, the half adder takes 3ns because it needs to go through 3 gates in worst case.

• A critical path is the path that contains the largest number of gates.

The Circuit with Short Critical Path is Faster.

Ripple Carry Adder (RCA)

• A chain of full adders (FA) is called ripple carry adder (RCA).

- If we assume FA takes 3ns, this RCA takes ? ns to get the final result.
- RCA is slow because each FA needs to wait until it receives a carry value from the previous FA.

Carry Lookahead Adder (CLA)

- Basic Idea: We can obtain carry values in advance.
- Carry c_{i+1} can be generated if one of the following cases occurs.
 - 1) x_i and y_i are both 1.
 2) (X_i or Y_i is 1) and C_i is 1.
- Let's define
 - 1) $g_i = x_i y_i$ 2) $p_i = x_i + y_i$
- Then $c_{i+1} = g_i + p_i c_i$
- $c_1 = g_0 + p_0 c_0$
- $c_2 = g_1 + p_1 c_1 = g_1 + p_1 (g_0 + p_0 c_0)$

$$c_3 = g_2 + p_2 c_2 = \dots$$

Lecture 10 - 15

Carry Lookahead Adder (CLA)

