# Lecture 2

## Codes

Revised by WJ Han

Youpyo Hong, Dongguk University



#### **BCD Code**

- A binary number is the most natural system for a computer, but people feel decimal system more convenient.
- Binary Coded Decimal (BCD) is to use 4-bit binary code for one decimal number as follows.

| Decimal symbol | BCD digit |                     |
|----------------|-----------|---------------------|
| 0              | 0000      | (E)                 |
| 1              | 0001      | (5) <sub>10</sub> = |
| 2              | 0010      | (24)                |
| 3              | 0011      | $(31)_{10}$         |
| 4              | 0100      |                     |
| 5              | 0101      |                     |
| 6              | 0110      |                     |
| 7              | 0111      |                     |
| 8              | 1000      |                     |
| 9              | 1001      |                     |

(5)<sub>10 =</sub> (0101)<sub>BCD</sub>

 $(31)_{10} = (0011 \ 0001)_{BCD}$ 

• BCD code is called a weighted code.

#### **BCD Addition**

• If we add two BCD numbers like binary numbers, the result may be incorrect.



- 1100 is not a BCD code. There was an overflow.
- Let's suppose we have another BCD digit. If you add 0110 to the incorrect result, you get the correct result with a carry. Why?



#### **Notes on BCD Addition**

- Since each digit does not exceed 9, the sum cannot be greater than 9+9+1 = 19, with the 1 being a previous carry.
- When the binary sum is greater than 1001, the result is an invalid BCD digit. The addition of 6 = (1001)<sup>2</sup> to the binary sum converts it to the correct digit and also produces a carry as required.
- This is because a carry in the MSB position of the binary sum and a decimal carry deffer by 16 10 = 6.
- Consider the BCD addition 8 + 9 = 17 :
- Consider the addition of 184 + 576 = 760 in BCD :

#### **Other Decimal Codes**

| Decimal<br>Digit | BCD<br>8421 | 2421 | Excess-3 | 8, 4, -2, -1 |
|------------------|-------------|------|----------|--------------|
| 0                | 0000        | 0000 | 0011     | 0000         |
| 1                | 0001        | 0001 | 0100     | 0111         |
| 2                | 0010        | 0010 | 0101     | 0110         |
| 3                | 0011        | 0011 | 0110     | 0101         |
| 4                | 0100        | 0100 | 0111     | 0100         |
| 5                | 0101        | 1011 | 1000     | 1011         |
| 6                | 0110        | 1100 | 1001     | 1010         |
| 7                | 0111        | 1101 | 1010     | 1001         |
| 8                | 1000        | 1110 | 1011     | 1000         |
| 9                | 1001        | 1111 | 1100     | 1111         |
|                  | 1010        | 0101 | 0000     | 0001         |
| Unused           | 1011        | 0110 | 0001     | 0010         |
| hit              | 1100        | 0111 | 0010     | 0011         |
| combi-           | 1101        | 1000 | 1101     | 1100         |
| nations          | 1110        | 1001 | 1110     | 1101         |
| nations          | 1111        | 1010 | 1111     | 1110         |

Table 1.5 Four Different Binary Codes for the Decimal Digits

#### **Excess-3 Code**

• For excess-3 code (XS-3), add 3 to the BCD code.

Ex) XS-3 code for 24 ?

• XS-3 code is called self-complementing code.

| Decimal Digit | BCD  | Excess-3 |                |
|---------------|------|----------|----------------|
| 0             | 0000 | 0011     | Decimal Digit  |
| 1             | 0001 | 0100     | 9's complement |
| 2             | 0010 | 0101     | 0 9            |
| 3             | 0011 | 0110     | 1 8            |
| 4             | 0100 | 0111     |                |
| 5             | 0101 | 1000     | XS-3 code      |
| 6             | 0110 | 1001     | 1's complement |
| 7             | 0111 | 1010     | 0011 1100      |
| 8             | 1000 | 1011     | 0100 1011      |
| 9             | 1001 | 1100     |                |

#### • XS-3 code is the only unweighted code which is self-complementing.

#### **Self-complementing codes**

 How to check for a code to be self-complementing in the weighted codes?

w3 w2 w1 w0 (4 weights)
w3 + w2 + w1 + w0 = 9 : self-complementing
w3 + w2 + w1 + w0 != 9 : non self-complementing

Ex) 2421 code -> self-comp. because of 2+4+2+1 = 9 BCD code -> non self-comp. because of 8+4+2+1 = 15

• How about 5211 code ?



#### **Gray Code**

- We call it Gray code after Frank Gray.
- Gray code is a code for which only one bit changes between each pair of successive codes.

| Decimal symbol | Gray Code |  |  |
|----------------|-----------|--|--|
| 0              | 000       |  |  |
| 1              | 001       |  |  |
| 2              | 011       |  |  |
| 3              | 010       |  |  |
| 4              | 110       |  |  |
| 5              | 111       |  |  |
| 6              | 101       |  |  |
| 7              | 100       |  |  |
|                |           |  |  |

- Gray code is called unit distance code or cyclic.
  - cf. Hamilton path

#### **Binary to Gray Code Conversion**

- How to derive a gray code?
  - Step1. Record the MSB as it is.
  - Step2. Add the MSB to the next bit,

record the sum and neglect the carry.

- Step3. Repeat the step2 for the next bit.
- For Example,

Binary 1011 1 (MSB) + 0 + 1 + 1 Gray code 1110 1 = 1 = 1 = 0 (neglect the carry)

Youpyo Hong, Dongguk University

#### **Alphanumeric Codes**

- Many computers need to handle letters in addition to numbers.
- But, computers can recognize binary numbers only. What can we do?
- We can assign a code to each letter.

Ex) Use BCD for numbers and interpret 1010 as A, 1011 as B, etc.

• There are alphanumeric codes like ASCII codes and EBCDIC codes.

#### **ASCII Codes**

- ASCII stands for American Standard Code for Information Interchange.
- The standard binary code for the alphanumeric characters.
- It uses seven bits to code 128 characters including numbers.

 $B_6B_5B_4B_3B_2B_1B_0 \quad ASCII$  $B_6B_5B_4B_3B_2B_1B_0 \quad ASCII$ 0 0 0 0 0 0 0 NULL 000001 Α 1000010 B 0 0 0 0 0 0 1011111 1 0 0 0 1 0 2 0 1 1 0 0 1 0 

#### **ASCII Codes**

|                   | ₩<br><i>b</i> <sub>7</sub> <i>b</i> <sub>6</sub> <i>b</i> <sub>5</sub> |     |     |     |     |          |     |        |
|-------------------|------------------------------------------------------------------------|-----|-----|-----|-----|----------|-----|--------|
| $b_4 b_3 b_2 b_1$ | 000                                                                    | 001 | 010 | 011 | 100 | 101      | 110 | 111    |
| 0000              | NUL                                                                    | DLE | SP  | 0   | @   | Р        |     | р      |
| 0001              | SOH                                                                    | DC1 | !   | 1   | А   | Q        | a   | q      |
| 0010              | STX                                                                    | DC2 | "   | 2   | В   | R        | b   | r      |
| 0011              | ETX                                                                    | DC3 | #   | 3   | С   | S        | с   | S      |
| 0100              | EOT                                                                    | DC4 | \$  | 4   | D   | Т        | d   | t      |
| 0101              | ENQ                                                                    | NAK | %   | 5   | Е   | U        | e   | u      |
| 0110              | ACK                                                                    | SYN | &   | 6   | F   | V        | f   | V      |
| 0111              | BEL                                                                    | ETB | •   | 7   | G   | W        | g   | W      |
| 1000              | BS                                                                     | CAN | (   | 8   | Н   | X        | h   | х      |
| 1001              | HT                                                                     | EM  | )   | 9   | Ι   | Y        | i   | У      |
| 1010              | LF                                                                     | SUB | *   | :   | J   | Ζ        | j   | Z      |
| 1011              | VT                                                                     | ESC | +   | ;   | Κ   | [        | k   | {      |
| 1100              | FF                                                                     | FS  | ,   | <   | L   | \        | 1   |        |
| 1101              | CR                                                                     | GS  | —   | =   | М   | ]        | m   | }      |
| 1110              | SO                                                                     | RS  |     | >   | Ν   | $\wedge$ | n   | $\sim$ |
| 1111              | SI                                                                     | US  | /   | ?   | 0   | -        | 0   | DEL    |

#### **Extra Bit in ASCII Codes**

- Most computers use 8-bits as a basic data unit called a byte.
- When we use ASCII code, the extra 1-bit is used for many other purposes, e.g. parity bit.

### **Parity Bit for Error Detection**

- There can be an error during transmission or storage.
- There are many ways to detect if data is modified from its original value.
- Parity bit is a widely used error detection technique.

|                   | Even Parity Bit Added<br>(make # of 1s even) | Odd Parity Bit Added |
|-------------------|----------------------------------------------|----------------------|
| ASCII A = 1000001 | 01000001                                     | 11000001             |