Lecture 3 - 1

Lecture 3

Logic and Gates

Revised by WJ Han

Youpyo Hong, Dongguk University

Binary Logic

- Binary logic deals with variables that can take on two discrete values and operations for them.
- There are three basic logical operations AND, OR, and NOT.
 - AND is a binary operator represented by a dot ".". $Z = X \cdot Y$ means that Z is 1 if and only if X =1 and Y = 1.
 - OR is a binary operator represented by "+". Z = X + Y means that Z is 1 if X = 1 or Y = 1 (or both X and Y are 1).
 - <u>N</u>ot is a unary operator represented by a bar over the variable. Z = X means Z = 1 if X = 0 and Z = 0 if X = 1.

Lecture 3 - 3

Truth Tables

• A truth table is a table showing the outputs of a function for all possible input combinations.

Χ	Y	F	Χ	Y	F	X	F
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1	-	•
1	1	1	1	1	1		
F = X⋅Y			F = X+Y			I	$F = \overline{X}$

Logic Gates

• Logic gates are electronic circuits which operate on one or more input signals to produce an output signal.

• The input terminals of a gate accept binary signals within the allowable range.

```
Lecture 3 - 5
```

Gates with Multiple Inputs

- AND and OR gates may have more than two inputs.
- A multiple input AND gate produces 1 if and only if all the inputs are 1.
- A multiple input OR gate produces 1 if (
).

• Practice : Show the truth table for F, G, H and I from the above figure.

Lecture 3 - 6

Two More Logic Gates

Digital logic Gates

Section 2.8 Digital Logic Gates 77

Name	Graphic symbol	Algebraic function	Truth table		
			x	4	F
			0		0
AND	^) —	$-F = x \cdot y$	0	ĩ I-	0
	y		1	ô l	ő
			î	i	1
			х	y	ŀ
20202	1-1	5 - 2 (-) (-)	0	0	0
OR		$-F \qquad F = x + y$	0	1	1
	,		1	õ	1
			1	1	1
			x	1	2
Inverter	x->	-F F = x'	0	1	
			1	0	1
10000	x	$-F \qquad F = x$	x		_
Buffer			0 0		1
			1		
			-	<i>y</i>	
	-	-F F = (xy)'	0	0	
NAND	v /	1 1 (4))	0	1	
			1	0	
			1	1	
			x	7	
	1-1	$F = (x + y)^{2}$	0	0	
NOR	1-1-	-7 1 (x - 7)	0	1	
			1	0	
			1	1	
			x	y	
Exclusive-OR		F = xy' + x'y	0	0	
(XOR)		$-F = x \oplus y$	0	1	
	10		1	0	
			1	1	
			x	y	
Exclusive-NOR	x-H	F = xy + x'y'	0	0	
or	v 20	$= (x \oplus y)'$	0	1	
equivalence	10		1	0	
			1	1	

F Digital logic gates