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Lecture 4 - 2
Key Terms

• Literal - a variable or the complement of a variable. 
  ex)  X, Y, X
  

• Normal Term - a product or sum term in which no var. appears more 
than once. 

  ex)  XYZ, Y+W
  

• Product Term (AND term) :  a single literal or a product of two or more 
literals. 

  ex) Z, XY, WYZ, WYZ.
  A product term can be represented by a rectangle (cube) in a K-

map and we will see why later.
  

• Sum Term (OR term) ?
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Lecture 4 - 3
Minterms

• Now consider two binary variables X and Y combined with an AND 
operation. 

• There are four possible combinations: X’Y’, X’Y, XY’,  and XY.

•  Each of these four AND terms is called a minterm.

X Y Terms      Designation

             m0

             m1

             m2

             m3

0
0
1
1

0
1
0
1

X’Y’
X’Y
XY‘
XY
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Lecture 4 - 4
Maxterms

• Now consider two binary variables X and Y combined with an OR 
operation. 

• There are four possible combinations: X’Y’, X’Y, XY’,  and XY.

•  Each of these four OR terms is called a maxterm.

  

X Y Terms      Designation

             M0

             M1

             M2

             M3

0
0
1
1

0
1
0
1

XY
XY’
X’Y
X’Y’
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Lecture 4 - 5
Sum of Minterms

• A Boolean function can be expressed algebraically from a given truth 
table by forming a minterm for each combination of the variables that 
produces a 1 in the function and then taking the OR of all those 
terms.

• Any Boolean function can be expressed as a sum of  minterms. 

• Let’s derive the Boolean function from a truth table

X Y   F       Designation

             m0

             m1

             m2

             m3

0
0
1
1

0
1
0
1

 1
 0
 1
 0     F = X’Y’ + XY’   =   m0+ m2 

.

•  F( X, Y ) =   (0, 2)     =    m0+ m2      [ brief notation ]
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Lecture 4 - 6
Product of Maxterms

• Any Boolean function can be expressed as a product of  maxterms.

• Form a maxterm for each combination of the variables that produces 
a 0 in the function, and then from the AND of all those maxterms.

• In the former example,   

  F = (X+Y’)(X’+Y’)  =  M1  M3

  

  F( X, Y ) =   (1, 3)     [ brief notation ]
  
  
  

• Boolean functions expressed as a sum of minterms or product of 
maxterms are said to be in canonical form.  
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Lecture 4 - 7
Example : Function of 3 Variables

• Let’s derive the logical expression as a sum of minterms from a truth 
table.

  
X Y Z F

0
1
0
0
1
0
0
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

F = X’Y’Z+XY’Z’+XYZ

 =  m1 + m4 + m7   =  (1, 4, 7) 

• As a product of maxterms, 

  F =  (0, 2, 3, 5, 6) = M0 M2 M3 M5 M6            
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Lecture 4 - 8
Conversion between Canonical Forms

• As an Example, F(X,Y,Z) = (1, 4, 7)

- the complement of F,    F’(X,Y,Z) = (0, 2, 3, 5, 6)
                                                         =  m0 + m2 + m3  + m5 + m6

       
- the complement of F’ by DeMorgan’s theorem

  F = ( m0 + m2 + m3  + m5 + m6 )’  =   m0’ m2’ m3’ m5’ m6’ 
                                                     =   M0     M2   M3    M5   M6

                                                     =   (0, 2, 3, 5, 6)
  
- mj’ = Mj    ;  the maxterm with subscript j is a complement of the 

minterm with the same subscript j and vice versa.
  ex)  m0’ = (X’Y’Z’)’ = X + Y + Z = M0

• To convert from one  canonical form to another, interchange the sym-
bols  and  and list those numbers missing from the original form.
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Lecture 4 - 9
Standard Forms

• The two canonical forms of Boolean algebra are basic forms that one 
obtains from reading a given function from the truth table.

  
• Another way to express Boolean functions is in standard form. 

         There are two types of standard forms : the sum of products and 
        products of sums.

  
• Sum-of-product (=SOP) : a sum of product terms. 

  
  ex)  Y + XY +XYZ, XY+Y+Z
  

•  Product-of-Sums (POS) ?

• This standard type of expression results in a two-level implementa-
tion.
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