Lecture 4

Switching Algebra

Revised by WJ Han

Postulates & Theorems 1

- Postulate 2 X + 0 = X, $X \cdot 1 = X$
- Postulate 5 $X + \overline{X} = 1$, $X \cdot \overline{X} = 0$
- Theorem 1 X + X = X, $X \cdot X = X$
- Theorem 2 X + 1 = 1, $X \cdot 0 = 0$

Postulates & Theorems 2

 Commutative 	X + Y = Y + X,	$X \cdot Y = Y \cdot X$
 Associative 	(X + Y) + Z = X + (Y + Z),	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
 Distributive 	$X \cdot Y + X \cdot Z = X \cdot (Y + Z),$	(X+Y)(X+Z)=X + Y ⋅ Z
• DeMorgan	$\overline{(X+Y)} = \overline{X} \cdot \overline{Y},$	$\overline{(XY)} = \overline{X} + \overline{Y}$
 Absorption 	$\mathbf{X} + \mathbf{X} \cdot \mathbf{Y} = \mathbf{X},$	$X \cdot (X+Y) = X$

Lecture 4 - 4

Algebraic Manipulation

$$F = \overline{X}YZ + \overline{X}Y\overline{Z} + XZ$$
$$= \overline{X}Y(Z + \overline{Z}) + XZ$$
$$= \overline{X}Y \cdot 1 + XZ$$
$$= \overline{X}Y + XZ$$

Lecture 4 - 5

DeMorgan's Law

$$\overline{\mathbf{X} + \mathbf{Y}} = \overline{\mathbf{X}} \cdot \overline{\mathbf{Y}} \qquad \overline{\mathbf{X} \cdot \mathbf{Y}} = \overline{\mathbf{X}} + \overline{\mathbf{Y}}$$

=> Gate Conversion

Gate Conversion

If $Z = \overline{XY}$, then $Z = \overline{X} + \overline{Y}$

Note : You can change OR to AND by shifting bubbles across the gate.

If there are more than one gate, convert from input to output.

Multiple Gates Conversion Example

• Redraw the first logic diagram using NAND gates and inverters only.

Finding a Complement

Change OR to AND, and AND to OR, then complement each variable.

$$F = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$$

Find \overline{F} .

 $\overline{F} = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z =$

Duality

- Principle of Duality
 - Any expression remains true if 0 and 1 are swapped and AND and OR are swapped from any Boolean theorem.

Ex) Dual of $\{X + Y = Y + X\}$ is $\{XY = YX\}$

- Before taking dual, fully parenthesize the formula.

Proof Practice 1

Prove A(A+B) = A $A \cdot (A+B)$ $= A \cdot A + AB$ $= A + A \cdot B$ $= A \cdot 1 + A \cdot B$ $= A \cdot (1+B)$ $= A \cdot 1$

= A

Proof Practice 2

Prove A + $\overline{A} \cdot B$ = A+B
$A + \overline{A} \cdot B = A \cdot 1 + \overline{A} \cdot B$
$= A \cdot (B + \overline{B}) + \overline{A} \cdot B$
$= \underline{A} \cdot \underline{B} + A \cdot \overline{B} + \overline{A} \cdot B$
$= \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{B}$
$= \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \overline{\mathbf{B}} + \mathbf{A} \cdot \mathbf{B} + \overline{\mathbf{A}} \cdot \mathbf{B}$
$= A \cdot (B + \overline{B}) + B \cdot (A + \overline{A})$
= A·1 + B·1

= A + B

Proof Practice 3

Proof of $A + \overline{A} \cdot B = A + B$ using its dual.

The dual of the given formula = $A \cdot (\overline{A} + B) = A \cdot B$

 $A \cdot (\overline{A} + B)$ = $A \cdot \overline{A} + A \cdot B$ = $0 + A \cdot B$ = $A \cdot B$ Thus, $A + \overline{A} \cdot B = A + B$