Lecture 5

Karnaugh-Map

Revised by WJ Han

Karnaugh-Map

K-Map for 2 Variables

K-Map for 3 Variables

Logic Expression, Truth Table, K-Map, and Logic Diagram

Non-Unique Circuits for the Same Function

Truth Table Again

• Let's derive the logical expression from a truth table.

Χ	Υ	Ζ	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	$\mathbf{F} = \mathbf{X} \cdot \mathbf{Y} \cdot \mathbf{Z} + \mathbf{X} \cdot \mathbf{Y} \cdot \mathbf{Z}$
1	0	0	1	(- V 7)
1	0	1	0	(= 🗡
1	1	0	1	
1	1	1	0	

- A truth table provides a Sum-of-Minterms form naturally.
- A K-map also provides a Sum-of-Product (SOP) form naturally.
 - : each product does not have to be a minterm as we will see.

K-Map Indexing Methods

Property of K-Map

- One cell in K-map represents a minterm.
- We can get an AND-OR (Sum-of-Product) style circuits "easily" from K-map.
- Two adjacent cells in K-map contain the same variable in positive and negative forms.

Adjacency in K-Map (1)

A cell is adjacent to the cells if they share a line..

Lecture 5 - 11

Adjacency in K-Map (2)

Note that the cell on the boundary are adjacent to the cell on the other side. (You need some imagination power!!)

Motivation of K-Map Simplification

• If we express K-map using logic expression, only the cells with 1 show up in Sum-of-Minterms form.

• Two minterms that differ only in a variable can be combined into one.

Ex)
$$X \cdot \overline{Y} \cdot \overline{Z} + X \cdot Y \cdot \overline{Z} = X \overline{Z}(Y + \overline{Y}) = X \overline{Z}$$

• We like simpler form. How can we get simpler expression from Kmap?

Introduction to K-Map Simplification

• We use a rectangle to specify that the sum of two minterms in that rectangle can be combined to only one product term.

- How to read the expression for a rectangle?
 - Find out the variable whose polarity (positive or negative) is consistent in the rectangle.

Exercise on a Rectangle Reading

Minterm Numbers in Truth Table and K-Map

Χ	Υ	Ζ	minterm no.					
0	0	0	0					
0	0	1	1	ZXY	00	01	11	10
0	1	0	2		0	2	6	Δ
0	1	1	3	0	Ŭ	~	U	
1	0	0	4	4	1	3	7	5
1	0	1	5	1	•			
1	1	0	6					
1	1	1	7					

 $F = \overline{X} \cdot \overline{Y} \cdot \overline{Z} + X \cdot Y \cdot Z$ can be described by $F = \sum (0, 7)$

K-Map Simplification Examples

1

1

 $F = \overline{A}\overline{C} + \overline{A}C = \overline{A}$

F =							
Α	В	С	F				
0	0	0	1				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	0				

1

0

0

Lecture 5 - 17

Lecture 5 - 18

- Lesson
 - Combine cells using as large rectangle as possible.

Lecture 5 - 19

Impossible cover

(Only cells in a rectangle can be circled. Why?)

Redundant cover

Lesson

- Use as few rectangles as possible.

Four-Variable K-Map

Minterm Numbers in K-Map

 $F = A \cdot D$ can be described by $F = \Sigma$ (9,11,13,14)

The Covers That Can Be Combined

- They must be adjacent.
- Their sizes are the same.
- Correct covers can have 2ⁿ cells in it.

2 + 2 = 4, 4 + 4 = 8, 8 + 8 = 16, so on....

Adjacency in K-Map (3)

A cube is adjacent to another cube if they share a segment along one side and their sizes are the same.

Adjacent Covers

The two covers differ (complement) in only one variable

if the two covers are adjacent.

Then the two covers can be combined into one cover.

Adjacent Covers with Different Sizes

The two covers have different size.

The two covers differ in more than one variables.

Then the two covers cannot be combined.

Partially Overlapped Covers

Combine covers using as large cover as possible. $F = \overline{A} \cdot D + B \cdot D$ is better than $F = \overline{A} \cdot D + A \cdot B \cdot D$

Exercise on Covers

Practice

Simplify the Boolean function

 $F(W,X,Y,Z) = \Sigma$ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

Simplify the Boolean function

 $\mathbf{F} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}} \cdot \overline{\mathbf{C}} + \overline{\mathbf{B}} \cdot \mathbf{C} \cdot \overline{\mathbf{D}} + \overline{\mathbf{A}} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \overline{\mathbf{D}} + \mathbf{A} \cdot \overline{\mathbf{B}} \cdot \overline{\mathbf{C}}$