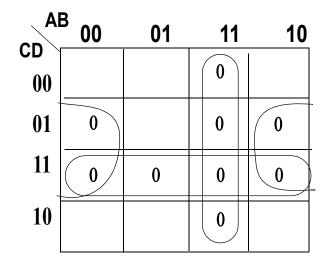
Lecture 7

Miscellaneous on Karnaugh-Map

Revised by WJ Han

Product of Sums (POS) Simplification

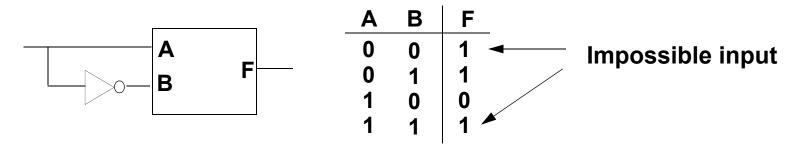

With minor modification, we can get a simple POS expression. SOP form can be changed to POS form using a complement.

$$\overline{F} = A \cdot B + C \cdot D$$

$$(\overline{F}) = \overline{AB + CD} = \overline{(AB) + (CD)} = (\overline{A} + \overline{B}) \cdot (\overline{C} + \overline{D}) = POS$$

Thus, to obtain POS, take \overline{F} in SOP and complement it.

3 00	01	11	10
		0	
0		0	0
0	0	0	0
		0	
	0	0 01	00 01 11 0 0 0 0 0 0

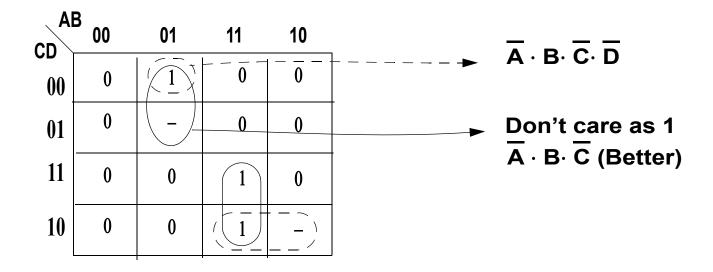


$$\overline{F} = AB + CD + \overline{B}D$$

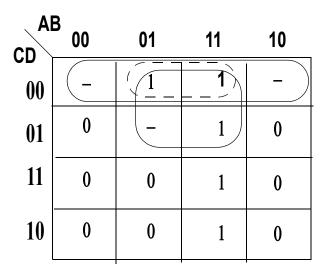
$$F = (\overline{A} + \overline{B})(\overline{C} + \overline{D})(B + \overline{D})$$

Don't Care Condition

- A function is either 1 or 0 for each input combination.
- Sometimes, we do not care for some input combinations because they are not important or they cannot occur.

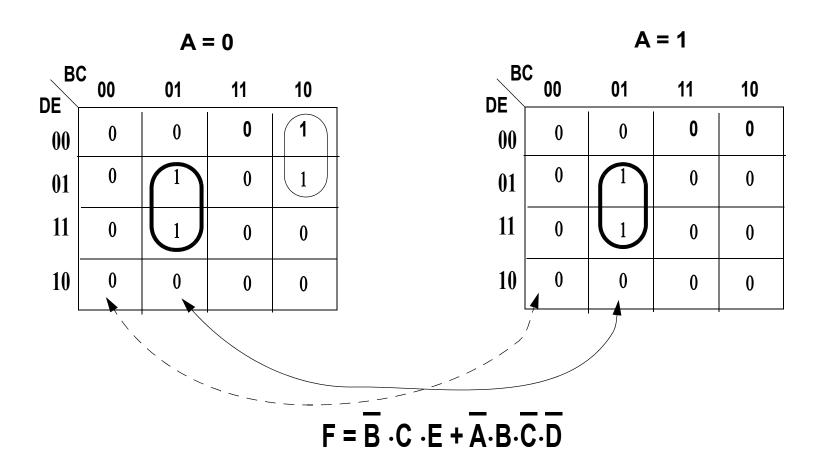


• We call such inputs "don't cares", (= don't care input conditions.)


Don't Care Minterm Flexibility

• Don't care minterm can be treated as 0 or 1.

Utilization of Don't Care Minterm


• Treat each don't care minterm as 0 or 1 to make covers biggest.

Practice

00 0 0 - 0	
01 1 1 - 0	
11 1 1	
10 - 0	

K-Map for 5 Variables

